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In the paper, we propose a semiparametric framework for modeling the COVID-19 pandemic. The stochastic
part of the framework is based on Bayesian inference. The model is informed by the actual COVID-19 data
and the current epidemiological findings about the disease.

The framework combines many available data sources (number of positive cases, number of patients in
hospitals and in intensive care, etc.) to make outputs as accurate as possible and incorporates the times of non-
pharmaceutical governmental interventions which were adopted worldwide to slow-down the pandemic. The
model estimates the reproduction number of SARS-CoV-2, the number of infected individuals and the number
of patients in different disease progression states in time. It can be used for estimating current infection fatality
rate, proportion of individuals not detected and short term forecasting of important indicators for monitoring
the state of the healthcare system. With the prediction of the number of patients in hospitals and intensive
care units, policy makers could make data driven decisions to potentially avoid overloading the capacities
of the healthcare system. The model is applied to Slovene COVID-19 data showing the effectiveness of the
adopted interventions for controlling the epidemic by reducing the reproduction number of SARS-CoV-2. It is
estimated that the proportion of infected people in Slovenia was among the lowest in Europe (0.350%, 90% CI
[0.245-0.573]1%), that infection fatality rate in Slovenia until the end of first wave was 1.56% (90% CI
[0.94-2.21]%) and the proportion of unidentified cases was 88% (90% CI [83-93]%).

The proposed framework can be extended to more countries/regions, thus allowing for comparison between
them. One such modification is exhibited on data for Slovene hospitals.

1. Introduction suitable care to all patients in need. Thus, it is of crucial importance

for policy makers to estimate R,, infection fatality rate, proportion of

The new coronavirus SARS-CoV-2 has quickly spread all around the
world greatly impacting all aspects of our lives. One of the key reasons
for its rapid spread is the high reproduction number of infection, R,.
The R, value represents the average number of people that an individ-
ual infects during their own infection period, whereby ¢ represents time.
R, is susceptible to change due to interventions, social behavior, etc.
When R, < 1, the incidence of new cases reduces, but when R, > 1, it
increases until the epidemic reaches its peak; after that, the incidence of
new cases starts to reduce due to (at least temporal) herd immunity [1].
The estimates of the basic reproduction number, R, for SARS-CoV-2
vary substantially, depending on the method of estimation, and stand at
about 3 [2-8]. Such a high basic reproduction number leads to a steep
exponential increase in the number of cases which, in turn, causes a
rapid increase in the number of people in need of hospitalization and
intensive care unit (ICU). Due to the limited capacities of the healthcare
system, this can lead to a situation where it is impossible to provide

* Corresponding author.

asymptomatic cases and forecasting the number of hospitalized patients
and patients in the ICUs.

In the current COVID-19 pandemic many governments have adopted
non-pharmaceutical interventions (NPIs) to control the spread of the
epidemic in their countries. Many models are available for forecasting
the COVID-19 pandemic with adopted NPIs, e.g. SIR-like (Susceptible—
Infected—Recovered-like) compartmental models that are essentially
deterministic models of stochastic processes, which capture the mean
dynamic quite well for large populations [9-14]. Another possible
approach is using large simulation models that include networked
(meta)populations or are agent-based and thus mimic the behavior
of all individuals [11,15,16]. Xue et al. [14] developed a network-
based model extending the network SIR model to capture the contact
heterogeneity among individuals.

Bayesian inference was introduced as an alternative to the compart-
mental models [17-19]. Here, simple stochastic models which describe
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the key features of epidemic spread are formulated and then actual data
are used to estimate the parameters of the model, thus allowing the
analysis to be driven by data and using less assumptions and/or fixed
parameters [20]. Furthermore, the final estimates are equipped with
statistically sound intervals of uncertainty.

Flaxman et al. [7] studied the influence of NPIs relying on Bayesian
inference, using data for 11 European countries. They concluded that,
after adopting all interventions, the reproduction number of infection
decreased from the basic value of 3.8 (mean value for all 11 countries)
to 0.66 (ranging from 0.44 in Norway to 0.82 in Belgium). In their
work, only country data on daily number of deaths (up to and including
May 4, 2020) were taken into consideration. The same model was
applied by also including Slovenia in the analysis (using data up to
and including April 12, 2020), showing that NPIs were effective also
in Slovenia, reducing the reproduction number to 0.6 with the whole
95% credible interval being below 1 [21]. One of the main goals of
these analyses was to accurately estimate the cumulative effect of in-
terventions while using only data on number of deaths. For this reason,
it was crucial to pool information across different countries whereby
imposing some strong assumptions. Namely, it had to be assumed
that the reproduction number of infection does not change between
given interventions and that their effect is similar across countries.
Therefore, the results based on the Flaxman model [7] are driven
more by countries with advanced epidemics and larger number of
deaths [7]. E.g., excluding the data for Italy and Spain, the estimate of
the reproduction number for Slovenia after adopting the NPIs changes
to 0.8 with 95% credible interval including 1 [21]. Additionally, there
is a large time lag in deaths data which may inform the parameters
of the model. Furthermore, the Flaxman model [7] cannot be directly
used for forecasting the number of hospitalized patients and patients in
ICUs or to estimate the proportion of unidentified cases.

We therefore propose an elaborated semiparametric modeling
framework based on a Bayesian approach, that greatly extends and
modifies the Flaxman model. In contrast to Flaxman et al. [7] which
only uses daily number of deaths, we propose an extension using
additional data sources for important indicators of the state of epidemic
and the healthcare system that are crucial for effectively coping with
the pandemic and have less ‘time lag’. We use: confirmed number of
cases and deaths, number of hospitalized patients, number of patients
in ICUs, number of patients admitted to and released from hospitals
and ICUs.

The rationale for including more data for a given country is many-
fold: (1) to obtain accurate estimates for countries with small number
of deaths and/or which are at the earlier stages of the epidemic without
having to pool the information from other countries, (2) to provide
estimates of more parameters, which allow to report other measures,
such as proportion of unidentified cases, (3) to make it possible to relax
some strong assumptions around NPIs (i.e. to address critiques about
the piece-wise constant R, of the Flaxman model).

We model the time varying effective reproduction number differ-
ently than the Flaxman model allowing more flexibility under weaker
assumptions. The outputs of our model are estimates of R, and other
parameters with narrower credible intervals due to the inclusion of
different data sources, and accurate short term forecasts of various im-
portant epidemic indicators. The quality of the model and its forecasts
is evaluated on real data.

We apply the proposed modeling framework using publicly avail-
able data for Slovenia [22]. We estimate the reproduction number of
SARS-CoV-2 and provide accurate short term forecasts for important
indicators for monitoring the state of the healthcare system through-
out the course of the Slovene COVID-19 epidemic. We show how
the proposed framework can be used to estimate the effectiveness of
the adopted NPIs (and their lifting) for Slovenia and estimate some
measures at the final time point, i.e., infection fatality rate, proportion
of cumulatively infected people and proportion of unidentified cases.
Flexibility of the proposed modeling framework is also illustrated using
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data at hospital level, providing separate forecasts for each hospital
where COVID-19 patients were admitted.

The rest of the article is organized as follows. In the next section we
formally present the model which is applied to Slovene COVID-19 data
and show its possible extensions/generalizations. This is followed by
showing a series of selected results for Slovene epidemic. The paper
concludes with a discussion and a summary of the most important
findings.

2. Modeling framework

Each country has a slightly different set of data, which usually does
not fit to a model that is optimal from the epidemiological point of
view. The main idea is to develop a model that is applicable to available
data, adapting it to suit Slovene data, but making it easy to adjust
according to availability and reliability of data in any country. First,
we present the core model for Slovenia. Then, we show how it may
be extended or modified to a more general framework. Finally, we
illustrate one possible modification of the model.

We adopt the following notation. We add its meaning in parentheses
so that the notation is easier to follow. Daily data on the number of con-
firmed cases is denoted by P, (positive cases), number of hospitalized
patients by H,, number of patients in Intensive Care Units (ICU) by U,,
daily number of new patients admitted to hospitals and to ICUs by H t’
(hospital in) and U] (ICU in), respectively, daily number of patients
released from hospitals and ICUs by H[O (hospital out) and U,O (ICU
out), respectively, daily number of deaths occurring in hospitals by DX
(death from hospital), and daily number of deaths occurring outside the
hospitals by D,C (death directly from cases), where ¢t = 1,...,n are days
from the start until the end of the analysis.

Let NV (u, o) denote a normal distribution with mean u and standard
deviation o. We say that X follows a folded-normal distribution, de-
noted by N*(u,0), if X = |Y| and Y ~ N(u,0). Let Unif(a, b) denote
a continuous uniform distribution on [a, b], let I'(u, &) denote a gamma
distribution with mean u and coefficient of variation &, and let Exp(4)
be the exponential distribution with mean 1/A. Using NegBin(yu, u + %)
we denote the negative binomial distribution with mean y and variance
u+ L If f is the density of a positive random variable, then { f32,
denotes its discretization via

15 5+0.5

fi= A f(ndt, fs=/

-0.5

f@dt fors=2.3,... (€]

2.1. The model

The core model is schematically presented in Fig. 1. We explain it
thoroughly in the next subsections. First, we present the upper part
(see line border on Fig. 1) that is used for modeling infections, then
the lower part used for modeling disease progression, and in the last
subsection the whole model is precisely specified. In Fig. 1, the data
are presented in circles, the deterministic parameters of the model are
colored red, while ‘true‘ parameters of the model, for which posterior
distributions are estimated, are in blue (the parameters with prior
distributions) or black (the transformed parameters).

2.1.1. Modeling infections

Following Flaxman et al. [7], the number of truly infected indi-
viduals ¢, (cases) is modeled using a discrete renewal process, which
is related to the Susceptible-Infected—Recovered model but it is not
expressed in differential form. Similar to [7], the time between when
a person gets infected and when he subsequently infects other people
(i.e. the serial interval distribution g) is distributed as

g~ I(u9,£9).

We use as in Flaxman et al. [7] 49 = 6.5 and &9 = 0.62 (Fig. 2, upper
left), performing sensitivity analysis for other values of u9. Note that
the distribution of parameter g is fixed in the model.
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Fig. 1. The model with data values (in circles), its expected values (in boxes), deterministic parameters in red, and ‘true‘ parameters (for which posterior distributions are estimated)
in blue (the parameters with prior distributions) or black (the transformed parameters, including expected values in boxes).

The expected number of truly infected individuals ¢, on a given day
t is then modeled by

o
c,=<1 k=1 %k chg, o

where N is the size of the population, R, is the time-varying reproduc-
tion number modeling the average number of secondary infections over
time, and g, is the discretization of g (1). Infections at time ¢ depend
on the number of infections in the previous days, first weighted by the
discretized serial interval distribution, and then scaled by R, and the
term accounting for the fact that population can develop (temporal)
herd immunity against SARS-CoV-2. The latter would simply be omitted
if immunity cannot be developed. Note that we do not have the data
for truly infected individuals that would correspond to c,.

The way the reproduction number varies in time is at the core of
our model: we assume that major government changes in policies (for

@

controlling the COVID-19 epidemic) drive the changes of R,, where we
consider two options. Let G; < G, < - < G be days of major changes
of policies. In the first option, where we emulated the study of Flaxman
et al. [7], the reproduction number is a piece-wise constant function
between days of policy changes:

K
R, = Ryexp (‘ Z “kzk,x> ,
k=l

where z,, is equal to 1 if 1 € [G;,Gy,,] and 0 otherwise, while z,
is equal to 1 if t > Gg and 0 otherwise. Parameter R, is the basic

reproduction number with a prior distribution (similarly as in [7])

€))

o ~ N¥(3.28,0.25). )

Independent prior distributions for the parameters «a/, ..., ax were cho-

sen to be

a, ~Exp(1) —log(2), k=1,.... K. 5)
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Fig. 2. Assumed serial interval distribution (g - upper left) and assumed distributions of various times =

With these prior distributions (for their graphical presentation see
Supplementary Material 1), we have P(a;, < 0) = 0.5 and for eachr > G,

K
exp( — D @z, | ~ Unif(0,2). (6)
k=1

To obtain a continuous estimate of R, (instead of a piece-wise
constant estimate of R,), we developed a second option: R, is modeled
through

K+1
R, =Ryexp| — Z sy | 7
k=1

where s, , is the kth column of the B spline basis matrix for the natural
splines, with the positions of the knots set to G; < G, < -+ < Gg.
Natural splines were used in order to maintain low degrees of freedom
(note that only one additional parameter needs to be estimated) and to
have a continuous function R,. Priors for R, and «; were chosen as in
the first option, but (6) does not hold anymore.

Since the process ¢, cannot start from zero, see (2), we have to seed
the model. As in [7], we assume that seeding of new infections begins
30 days before observing 10 cumulative deaths. From this date, we seed

X used in the model; note different scales.

the models with six sequential days ¢, ..., ¢, where we chose
¢y =+ =cg~Exp(l/v) ()
with prior distribution
v ~ Exp(0.03). (C)]
2.1.2. Modeling disease progression

First, we show how confirmed cases P, (positive cases) are incorpo-
rated in the model, others follow a similar logic. We assume that the

number of confirmed cases is distributed as
2

. p,
P, ~NegBin| p,.p, + ¢—'7, , (10
where prior distributions were chosen as
¢” ~ N*OyP), WP ~ N2, an

and p, is the expected number of confirmed cases that is modeled
mechanistically from cases ¢, as

t—1

P = Tf z Ckﬂ'zk. 12)
k=1
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Table 1

Modeling the expected number of individuals at a specific state (first column) from the
expected number of individuals at a previous state x, (third column, see also Fig. 1)
via formula (15).

Quantity Notation x, z?% Tj(
Positive cases Pe ¢ (@, +ruP,ePy PyP
Hospital in h! ¢ OO+ ru™ ety HEHT
Hospital out o RL D™, 1) 1

ICU in l A ) Ut gt
ICU out uf ul L, 84°) 1

Death in hospitals df h! ruP" eP") DH r]DH
Death outside the hospitals df ¢ T(u®.E9)+ r(uP*,eP°) D¢ rIDC

Parameter ¢” determines the amount of over-dispersion, i.e. the ad-
ditional variance of the negative binomial distribution above that of
the Poisson distribution. Smaller values of the parameter allow for
larger over-dispersion. The model could be re-parameterized so that
larger values allow for larger over-dispersion, potentially also allow-
ing no over-dispersion (see Supplementary Material 1). Parameter 'rf
represents the ratio of cases that are being tested. We model it as

P = ‘L'Pl’]P, (13)

P =
where 77 is fixed (chosen in exploratory fashion as a guess of the ratio

of cases being tested, see Table 2) and 5% is noise around it with prior
distribution

n” ~ N*(1,0.5). a4

Furthermore, nZ’ is discretized distribution for time from infection to
a positive test z7, which is assumed to be a sum of two independent
times: infection to onset (infection — onset) and onset to positive test
(onset — positive)

7P ~ T, E9) + TP, &P).

To sum up, the number of confirmed cases p, is the sum of the past
infections ¢, weighted by their probability of transition from ¢, to p,.
Importantly, 7, u©, £°, u¥ and &P are fixed, so z” is deterministic.
For the infection — onset time we used x© = 5.1, £&© = 0.86 as in [7].
The other deterministic parameters depend on the testing strategies
and were chosen in exploratory fashion, the chosen values are given
in Table 2.

The data for the number of admissions and releases from hospitals
and ICUs, and the number of deaths are incorporated in the model
following the same logic as P,, where we assumed the conditional
independence of different data sources given the model parameters (for
more details see Section 2.1.3). Hence, the expected values originate
from different data sources (see Fig. 1) with different discretized times
7 and ratios 7,. Formulas for expected number of individuals at a
specific state can be unified through

t—1
DI (15)
k=1

where x, is an appropriate expected number of individuals at a previous
state (see Fig. 1), and the meaning of 1:( and 7<% remains the same. To
be succinct, we present the rest of the model in Table 1. Note that col-
umn ¥ is fixed to 1 for hospital out and ICU out. This holds when H?
is just time-lagged H/, meaning that this data source does not separate
deceased patients from cured. The chosen values for the deterministic
parameters are given in Table 2. The assumed distributions of various
times used in our analyses are shown in Fig. 2.

Expected number of hospitalized patients 4, and number of patients

in ICUs are modeled differently compared to others. We used
hy=hi—h9,

I_ 40 16)
hy=h_+h! —h0, 1=2,...,n,

and similarly for u,. We use data on H, in addition to H, and H? due to
some inconsistencies in our data sources between the three and we did
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Table 2
Chosen values for deterministic parameters, defined in Table 1, where O parameters
were taken as in Flaxman et al. [7] and others were chosen in exploratory fashion.

X MX 52{ X
o 5.1 0.86

P 4 0.25 0.1
H! 2 0.45 0.07
HO 10 0.45

u’ 2 0.45 0.2
ue 11 0.45

DH 8 0.45 0.2
D¢ 18 0.45 0.006

similar for ICU. Note also that we do not have a possibility to go from
ul to ‘death from ICUs‘ as there is no such data available for Slovenia.

Daily number of deaths d, is then forecasted using d, = d° +
d!. Since the daily number of deaths D, was consistent in our data,
i.e., D, = DE + DH, additional modeling of D, was not necessary.

2.1.3. Model specification

According to Bayes theorem, the joint posterior distribution p(6|D)
is proportional to p(D|6)p(6) where p(D|6) is the likelihood of the data
D and p(0) is the joint prior distribution for all the model parameters
0. Specifically, the vector of parameters is

0=({p. b, bl 0O upul P, dl dCY (Y ™ X Y
K
{e AR A | Ry, W)

where X goes through all data sources, i.e. P (positive cases), H
(hospital), ! (hospital in), #© (hospital out), I/ (ICU), ! (ICU in), 1/©
(ICU out), DH (death in hospitals) and D€ (death outside hospitals).
The data are

1 o I o H C
D=({PI’Hf’HI’Ht ’Ut’Ut’Ur ’DI ’Dt ;':1)'

We assume conditional independence of different data sources given
the model parameters, so the likelihood can be expressed as

w10 = [T Pilp. &™) - .. - [] DE14E. 7).
=1 t=1

where p(P,|p,,¢T) is the probability density function of NegBin(p,, p, +
p?/¢") as specified in (10), similarly for others.

We assume independent prior distributions if not stated otherwise
in the previous subsections. In particular, the joint prior distribution is

K
PO = <H p@™ |w*>p(w">p<n*)> (H p(ap) P(Ry)p(er [V)p(v),
X

k=1
where the distributions of priors, from left to right, are specified in (11),
(14), (5), (4), (8) and (9) whereas all other parameters of 6 that are not
specified in the above joint prior are transformed parameters via (2),
(3) or (7), (12), (13), (15) and (16).

In addition to the posterior distributions for all the parameters,
including the expected numbers of individuals at all states (x,), the
outputs of our model are also their forecasts for a specified number
of days based on the posterior predictive distribution (the reliability of
forecasts is validated using methods presented in Section 2.4).

2.2. Possible extensions and modifications of the model

The described model could be extended to take into account data
from different countries m € {1,2,..., M} (or different regions etc.)
and make estimation and forecasts at country level. A possible gener-
alization is presented in Fig. 3. Note that there are three options for
modeling each parameter, for brevity we only describe them for ¢%.
The first option is to assume that all countries have the same parameter
¢", which could lead to a poor fit due to using only one parameter.
The second option is that each country has its own ¢,7: and that they
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Fig. 3. A possible extension of the core model (Fig. 1), where hyperparameters are colored green.

are independent of each other, i.e. giving each qﬁf its own prior, which
could lead to overfitting problems due to many parameters. The third
option is to model this parameter hierarchically as in Fig. 3, i.e.

BT by ~ NTOWT)

with a prior distribution for w”. In this way, we allow for the het-
erogeneity of parameters across countries, while using a common dis-
tribution with hyperparameter w7 to introduce some dependence and
constrain them in order to avoid the overfitting problem.

Furthermore, the model could be easily modified to correspond to
the availability and reliability of the data collected in a specific country
as certain branches of the model presented in Figs. 1 and 3 could be
removed. In fact, this is why the expected number of patients admitted
to hospitals i/ and expected number of deaths outside of hospitals
d¢ are modeled directly from the expected number of truly infected
¢,, instead through positive cases p,. Namely, data on positive cases
for the COVID-19 pandemic are often unreliable and depend strongly
upon testing strategy which changes during the course of the pandemic
and substantially varies between different countries. In this way, the
forecasts of our model are not driven by the number of positive cases,
which, if deemed necessary, can also simply be excluded from the
model.

2.3. Model stratified by hospitals

Here we show a modification of our model to incorporate data on
hospital level. The model is presented in Fig. 4.

Infections are modeled as before, then separate submodels for hos-
pitals are connected to ¢,. Data for M hospitals are denoted by H, ,,
H,{m, Ht?m, m = 1,..., M, similarly for ICU data. For each hospital we
use the same model as in Section 2.1.2, where the parameters T?n-il
(representing the probability of admission to hospital m) are hospital
specific, whereas all other parameters are not hospital specific, see
Fig. 4. We opted for this assumption in our application to Slovene
data for two reasons: (1) the daily numbers for hospitals were small

(increasing the variability of our estimates), and (2) the organization
of public health care in Slovenia is unified across the entire country,
COVID-19 patients are treated only in public hospitals. This assumption
could be easily relaxed in the model, if needed.

For Slovene hospitals we chose r,z,"’ = 007 - w,, (in the core
model %' = 0.07 was used, see Table 2) where the weights w,, were
determined from the data, yielding w;, = 043, w, = 028, w; =

0.13 and w, = 0.16 for University Medical Centre (UMC) Ljubljana,
UMC Maribor, University Clinic (UC) Golnik and General Hospital (GH)
Celje, respectively (COVID-19 patients in Slovenia have been admitted
only to these four hospitals).

2.4. Computational aspects and model validation

Convergence of the models was assessed based on R statistics [23],
trace plots, estimated posteriors, mean with 50%, and 90% credible in-
tervals for Ry, R, (the last day of studied period) and the « parameters
for each chain individually. Effective sample size is also reported.

Sensitivity analysis was performed for mean parameter of serial
distribution 9 considering 6, 6.5, 7 and 8 (see Supplementary Ma-
terial 2 and 3). Folded-normal distribution was compared with other
commonly used prior distributions for positive quantities, i.e., gamma
and log-normal distributions (see Supplementary Material 1). Several
choices for the over-dispersion parameter of the assumed negative
binomial distributions were considered (see Supplementary Material 1).
The differences were not substantial.

The model presented in Section 2.1 is also compared with the
Flaxman model [7] using Slovene data, showing that the estimate of
R, for Slovenia after the final intervention based on our model is
larger with slightly narrower CI (see Supplementary Material 1 for more
details). The effect of including several data sources in our model is
shown in Supplementary Material 1; using only a single data source,
i.e. data on the daily number of deaths results in wider Cls.

For each model we evaluate the quality of out-of-time forecasts for
F future days as follows. It was decided that forecasts will not be
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made until the occurrence of 10 cumulative deaths, which occurred in
Slovenia on March 29, 2020; the models were then refitted daily up to
and including May 24, 2020, evaluating the quality of the out-of-time
forecasts for F = 1,2, ..., 10. The refitted models were used to compute
the exact expected log predictive density (EELPDS) [24] separately for
each variable (deaths, hospital, ICU, etc.) and F with larger values of
EELPDS implying better predictive ability.

The models were fitted in R [25] (R version 3.6.3) using R package
rstan [26]. The models from May 6, 2020 onwards are fitted using
1600 iterations (800 warmup iterations), 4 chains, keeping every 4th
sample, setting the target average proposal acceptance probability dur-
ing standard adaptation period to 0.98 and putting a cap on the depth
of the trees that it evaluates during each iteration to 15. The earlier
models were fitted using 2600 iterations (1300 warmup iterations)
setting the target average proposal acceptance probability to 0.995 with
the other settings as described before. All the code needed to reproduce
the results is available on GitHub [27]. The analysis was performed on
cluster of CentOS based containers.

3. Application to Slovene COVID-19 data

In this section, we apply the proposed modeling framework to pub-
licly available Slovene COVID-19 data [22]. We have analyzed the data
up to and including June 3, 2020. For a brief presentation of the data
see Fig. 5 where for the study period we plot the number of patients
treated in hospitals and ICUs on a given date, cumulative number of
deaths and cumulative number of deaths occurring in hospitals. First

infection was confirmed on March 4, 2020 and in total there were
1477 infections in the studied period; the largest number of confirmed
infections in a single day occurred on March 26 when 61 new infections
were confirmed. First death due to COVID-19 occurred on March 14,
2020; in total there were 109 deaths, out of these 55 (50.5%) occurring
in the hospitals. First patients were admitted to hospitals and ICUs on
March 11, 2020; in total 352 and 73 patients were admitted to hospitals
and ICUs, respectively, with the largest number of new admissions
occurring on March 27, 2020 and March 25, 2020, when 23 and 6 new
patients were admitted to hospitals and ICUs, respectively.

In order to control the epidemic, Slovene Government banned pub-
lic events on March 10, 2020, which was followed by implementation
of complete lock-down on March 20, 2020 and prohibition of move-
ment outside of the municipality of residence on March 30, 2020.
The government started to relax the restrictions on April 30, 2020.
Correspondingly, G, < G, < G; < G, were set to these respective dates
when modeling R,.

3.1. Results for the model at the national level

The first goal was to estimate R, and the number of infected individ-
uals, and make forecasts for, among others, the number of hospitalized
patients and number of patients in ICUs using data at country level.
For this purpose, we use the model from Section 2.1. A series of
selected results is presented in Fig. 6; complete results are available
as Supplementary Material 2.

Estimated number of infected individuals and basic reproduction
number R, were very similar when modeling R, using splines and
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piece-wise constant function (see Supplementary Material 2). We have
estimated that 7287 people (0.350%; 90% credible interval (CI): [0.245
-0.573]%) have been infected with SARS-CoV-2 throughout the study
period when modeling with splines. The basic reproduction number has
increased from 3.17 (90% CI [2.74-3.59]) to 3.92 (90% CI [1.56-9.68])
until the adoption of measures to control the epidemic, after which
the effective R, started to decrease reaching its lowest value of 0.17
(90% CI [0.05-0.51]) at the end of the study period (see also Fig. 6,
panel C). Based on these results it can be concluded that the adopted
NPIs in Slovenia were effective in slowing down the spread of the
epidemic which eventually resulted in the end of the first wave. Using
piece-wise constant function in the model, the largest and smallest
estimated R, were less extreme, 3.21 [1.00-5.81] and 0.48 [0.44-0.52],
respectively. This is due to a supposition that R, does not change
between interventions and can therefore be only interpreted as average
R, in the period between two successive interventions, whereas when
using splines R, can be interpreted on a daily basis.

Based on the estimates of the number of infected individuals and
estimated number of deaths, we estimate, using splines when modeling
R,, that throughout the study period infection fatality rate (IFR) was

1.56% (90% CI [0.94-2.21]%). In Slovenia, the share of estimated
deaths outside the hospitals for this period was large, 47.15% (90%
CI [38.5-55.26]%), due to deaths in the retirement homes, since there
were many outbreaks therein. Excluding deaths not occurring in the
hospitals results in the IFR of 0.8% (90% CI [0.48-1.26]%). It is also
estimated that throughout the study period the proportion of unidenti-
fied cases (defined as 1 minus the ratio of the number of positive and
infected cases), which can account for asymptomatic cases, was equal
to 88% (90% CI [83-93]%).

Fig. 6 shows 3 examples of models fitted to various end-dates. The
quality of the out-of-time forecasts as measured by EELPDS was better
when using splines, with good ability to make out-of-time forecasts
throughout the course of the Slovene COVID-19 epidemic (see Fig. 6,
panels A, B). Considering only early data, the longer the interval
between end-date and final time-point prediction the wider the CI,
often even being uninformative (see Fig. 6, panels D, G). As expected,
when more data are available the precision of the forecasts improves
with much narrower Cls (see Fig. 6, panels E, F, H, I).

It is also important to note that the estimates of R, at the final
time-point can be imprecise when the final time-point is near the last
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intervention. This is a natural consequence of having few data when
estimating ay. Therefore, a long enough interval between the inter-
ventions and after the latest intervention is required in order to obtain
informative estimates. For example, final R, estimates as given by 90%
CI when using data up to and including May 1 (one day after some
restrictions were lifted), May 5 and May 10 were [0.11-2.47], [0.05-
1.40] and [0.03-0.61], respectively, when using splines and similarly
(although less precise with wider CIs) when using piece-wise constant
function (see Supplementary Material 2).

3.2. Results for model at the hospital level

Here, we use the data on hospital level with the goal of estimating
R, and the number of infected individuals and to forecast the number
of COVID-19 patients in each hospital. We use the model presented in
Section 2.3. A series of selected results are presented in Fig. 7; complete
results appear as Supplementary Material 3.

As with the analysis at the national level, using splines to model the
reproduction number resulted in larger EELPDS providing reasonable
short-term forecasts (for time intervals < 7 days) for each hospital
throughout the course of the Slovene COVID-19 epidemic (see Fig. 7,
panels A, B). A similar time trend is estimated for the reproduction
number as in the analysis at national level (see Fig. 7, panel C),
providing similar estimates of the total number of infected individuals.
As expected, since essentially no new information was introduced into
the model, the precision of the estimates is very similar as in the
previous analysis.

4. Discussion

The idea behind the model of Flaxman was to improve the accuracy
of estimates (i.e., to narrow its credible intervals) with pooling infor-
mation across different countries while only using data on number of
deaths. To achieve this, several strong assumptions had to be made.
For instance, they had to assume that the effect of each NPI was the
same across countries. Our model uses several data sources from the
same country to make estimates as accurate as possible without making
such strong assumptions. Using Slovene data, we have illustrated the

gain in efficiency by using several data sources in comparison with
using a single data source, i.e. daily number of deaths. The modeling
framework can be adapted to use data at different levels of aggrega-
tion, as was demonstrated on the Slovene data when making forecasts
at the hospital level. As expected, in our application this did not
further improve the efficiency of our estimates since essentially no
new information was added in the model. However, having separate
forecasts for each hospitals was important from a practical perspective
for monitoring the state of the Slovene health-care system.

With semiparametric model, there are several parameters which
need to be specified and are influencing the estimates. Some of these
parameters are obtained from the literature, the others can be estimated
from patient level data, if available, and plugged into the model,
e.g., the duration of time spent in hospital and ICU. However, if some
parameters cannot be determined, the model can be simplified by
omitting these parameters along with the data connected to them.

The model estimates and forecasts are largely driven by data, hence
their accuracy relies heavily on the quality of data. If some data sources
are not reliable enough or are not available then the model can be
simplified by omitting them. We have explained how sharing and/or
pooling information across different countries and/or regions could be
done, similarly as in Flaxman et al. [7], but this extension has to be
used with caution since it adds new assumptions to the model, which
are difficult to verify. The extended model would have to be thoroughly
validated.

When applying the proposed framework to Slovene data, we have
estimated that R, reduced after adopting the NPIs showing their ef-
ficacy in controlling the transmission of SARS-CoV-2. However, after
adopting all NPIs, R, as estimated by our model was larger than
when using the Flaxman model [7], suggesting that for the case of
Slovene data, using the data from other countries would result in over-
estimation of the effect of the NPIs on the reduction of R,. This is
also in line with our previous results [21], where we have observed
that excluding the two of the most affected European countries (Italy
and Spain) from the Flaxman model, results in much smaller estimated
reduction of R, after adopting the NPIs in Slovenia. The effects of the
NPIs seem to be the largest in these two countries.

Based on the proposed model we have estimated the proportion of
cumulatively infected people (attack rate) of 0.350% (90% credible
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interval (CI): [0.245-0.573]%) of the Slovene population suggesting
that Slovenia had one of the smallest attack rates in Europe. At the
same time, we have estimated the infection fatality rate (IFR) of 1.56%
(90% CI [0.94-2.21]%). While estimating the IFR is difficult, especially
for COVID-19, other studies tend to report it around 0.5%-1% [28],
which implies a large estimated IFR for Slovenia. This can be explained
by noting that during the first wave of Slovene epidemic, the virus
transmitted largely among older people inside retirement homes who
are at much higher risk of dying due to COVID-19. Up to May 4,
around 80% of all deaths occurred among people from retirement
homes [29] and all deaths outside the hospitals were in retirement
homes. Excluding the estimated number of deaths occurring outside the
hospitals yields a much smaller IFR of 0.80% (90% CI [0.48-1.26]%)
thus more closely agreeing with other studies. It is of importance
therefore to prevent the spread of the virus among elderly.

The estimated percentage of unidentified cases based on Slovene
data was equal to 88% (90% CI [83-93]%). Unidentified cases can
to some extent be attributed to asymptomatic or mild symptomatic
cases but could also reflect testing strategy of a country. Asymptomatic
cases can transmit the virus [30] causing difficulties in the control of
the epidemic [31]. Other studies have estimated that 40% to 45% of
those infected with SARS-CoV-2 remain asymptomatic [32] with large
differences between the studies (e.g., 17.9% in [33] to 87.9% in [34]).
A large estimate for Slovenia might be a consequence of the fact that
people with mild symptoms during the first wave were instructed to
self-isolate and were in large majority not tested for SARS-CoV-2.

5. Conclusion

We have presented a semiparametric framework for modeling and
forecasting COVID-19 pandemic combining Bayesian inference with
current epidemiological knowledge about SARS-CoV-2. It is based on
the model set by Flaxman et al. [7], whilst giving important extensions
and modifications in the model. The presented framework can be used
for estimating the number of individuals infected with SARS-Cov-2,
its effective reproduction number, infection fatality rate, proportion of
cumulatively infected people and proportion of unidentified cases, as
well as for accurate short term forecasts of various important indicators
of the state of epidemic for the healthcare system, e.g. the daily
number of patients admitted to hospitals and ICUs. Furthermore, we
have shown how the proposed framework could be extended to more
countries/regions, thus allowing for comparison between them.

Applying the framework to the Slovene data we found, that the
adoption of NPIs was effective in limiting the first wave in Slovenia
which mirrored in small estimated percentage of cumulatively infected
people of 0.350%, 90% CI [0.245-0.573]%. Despite that finding, the
estimated infection fatality rate for Slovenia was high (1.56%, 90%
CI [0.94-2.21]1%) which can be explained by entries of the virus into
retirement homes. When eliminating some of the deaths that could be
spared if there were no infections in retirement homes, an estimate for
IFR would fall to 0.80% (90% CI [0.48-1.26]%).

The proposed models can be easily implemented by those familiar
with Bayesian inference. The R code of our model applied to Slovene
data, which is partially based on the freely available R code provided
by Flaxman et al. [7], is available on GitHub [27].
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